TABLE OF CONTENTS: ADHESION MEASUREMENT METHODS: THEORY AND PRACTICE (CRC PRESS, 2006)

INTRODUCTION

1.1 **OVERVIEW**

1.2 WHAT IS ADHESION AND CAN IT BE **MEASURED?**

1.3 COMMENTS ON NOMENCLATURE AND USAGE

OVERVIEW OF MOST COMMON ADHESION 2. **MEASUREMENT METHODS**

2.1 **PREAMBLE**

2.2 **PEEL TEST**

- 2.2.1 Introduction
- 2.2.2 Advantages of Peel Test
- 2.2.3 Disadvantages of Peel Test
- 2.2.4 Summary and Recommendations

2.3 TAPE PEEL TEST

- 2.3.1 Introduction
- 2.3.2 Advantages of the Tape Peel Test
- 2.3.3 Disadvantages of Tape Peel Test
- 2.3.4 Summary and Recommendations

2.4 PULL TEST

- 2.4.1 Introduction
- 2.4.2 Advantages of Pull Test2.4.3 Disadvantages of the Pull Test
- 2.4.4 Summary and Recommendations

2.5 INDENTATION DEBONDING TEST

- 2.5.1 Introduction
- 2.5.2 Advantages of Indentation Debonding
- 2.5.3 Disadvantages of Indentation Debonding
- 2.5.4 Summary and Recommendations

2.6 SCRATCH TEST

- 2.6.1 Introduction
- 2.6.2 Advantages of the Scratch Test
- 2.6.3 Disadvantages of the Scratch Test
- 2.6.4 Summary and Recommendations

2.7 BLISTER TEST

- 2.7.1 Introduction
- 2.7.2 Advantages of Blister Test2.7.3 Disadvantages of the Blister Test
- 2.7.4 Summary and Recommendations

2.8 BEAM BENDING TESTS

- 2.8.1 Introduction
- 2.8.2 Three Point Bend Test
- 2.8.3 Four Point Bend Test
- 2.8.4 Standard Double Cantilevered Beam Test
- 2.8.5 Tapered Double Cantilevered Beam Test
- 2.8.6 Double Cleavage Drilled Compression Test
- 2.8.7 Brazil Nut Test
- 2.8.8 Wedge Test

- 2.8.9 Topple Beam Test
- 2.8.10 Advantages of Beam Bending Tests
- 2.8.11 Disadvantages of Beam Bending Tests
- 2.8.12 Summary and Recommendations

2.9 **SELF LOADING TESTS**

- 2.9.1 Circle Cut Test
- 2.9.2 MELT Test
- 2.9.3 Microstrip Test
- 2.9.4 Advantages of Self Loading Tests
- 2.9.5 Disadvantages of Self Loading Tests
- 2.9.6 Summary and Recommendations

2.10 MORE EXOTIC ADHESION MEASUREMENT **METHODS**

- 2.10.1 Laser Spallation: Early Work
- 2.10.2 Later Refined Experiments
- 2.10.3 LIDS Experiment
- 2.10.4 Advantages of Laser Spallation Tests
- 2.10.5 Disadvantages of Laser Spallation Test
- 2.10.6 Summary and Recommendations

2.11 ELECTROMAGNETIC TEST

- 2.11.1 Advantages of Electromagnetic Test
- 2.11.2 Disadvantages of Electromagnetic Test
- 2.11.3 Summary and Recommendations

2.12 NON-DESTRUCTIVE TESTS

- 2.12.1 Dynamic Modulus Test
- 2.12.2 Advantages of Dynamic Modulus Test
- 2.12.3 Disdvantages of Dynamic Modulus Test
- 2.12.4 Summary and Recommendations
- 2.13 Surface Acoustic Waves Test
- 2.13.1 Advantages of Surface Acoustic Waves Test
- 2.13.2 Disadvantages of Surface Acoustic Waves Test
- 2.13.3 Summary and Recommendations

3 THEORETICAL FOUNDATIONS OF QUANTITATIVE ADHESION MEASUREMENT METHODS

3.1 INTRODUCTION TO CONTINUUM THEORY

- 3.1.1 Concept of Stress in Solids
- 3.1.2 Special Stress States and Stress Conditions
- 3.1.2.1 Principal stresses
- 3.1.2.2 St. Venant's principle
- 3.1.2.3 Two dimensional stress states
- 3.1.3 Equation of Motion in Solids
- 3.1.4 Deformation and Strain
- 3.1.5 Constitutive Relations or Connecting the Stress to the Strain
- 3.1.5.1 General behavior
- 3.1.5.2 Homogeneous isotropic materials

3.2 **EXAMPLES**

3.2.1 Simple Deformations

3.3 **SOLVING THE FIELD EQUATIONS**

- 3.3.1 Uniaxial Tension
- 3.3.2 Biaxial Tension
- 3.3.3 Triaxial Stress Case

3.4 APPLICATION TO SIMPLE BEAMS

3.5 GENERAL METHODS FOR SOLVING FIELD **EQUATIONS OF ELASTICITY**

- 3.5.1 Displacement Formulation
- 3.5.2 Stress Formulation
- 3.5.3 Mixed formulation
- 3.6 NUMERICAL METHODS
- 3.6.1 Introduction

3.7 **DETAILED STRESS BEHAVIOR OF A FLEXIBLE COATING ON A RIGID DISK**

3.8 STRAIN ENERGY PRINCIPLES

3.9 THE MARVELOUS MYSTERIOUS J INTEGRAL

4. ELEMENTARY FRACTURE MECHANICS OF SOLIDS - APPLICATION TO PROBLEMS OF ADHESION

4.1 INTRODUCTION

- 4.1.1 Introductory Concepts
- 4.1.1.1 Strain energy approach
- 4.1.1.2 Stress intensity factor approach

4.2 FRACTURE MECHANICS AS APPLIED TO **PROBLEMS OF ADHESION**

- 4.2.1 Elementary Computational Methods 4.2.1.1 Basic model of thin coating on rigid disc
- 4.2.2 Decohesion Number Approach of Suo and Hutchinson

4.2.2.1 The decohesion number

- 4.2.3 Back of the Envelope Calculations
- 4.2.3.1 Polyimide on glass-ceramic
- 4.2.3.2 Nickel on glass

4.3 **SUMMARY**

5 APPLIED ADHESION TESTING

- 5.1 THE PEEL TEST
 - 5.1.1 Sample Preparation
 - 5.1.2 Test Equipment
 - 5.1.3 Peel Testing in Action
 - 5.1.4 Advanced Peel Testing
 - 5.1.4.1 Thermodynamics of the peel test
 - 5.1.4.2 Deformation calorimetry

5.2 FULLY QUANTITATIVE PEEL TESTING

- 5.2.1 Earliest Work, Elastic Analysis
- 5.2.2 Elastic-Plastic Analysis
- 5.2.2.1 Theory of elastic-plastic peeling for soft metals
- 5.2.3 Full Elastic-Plastic Analysis
- 5.2.3.1 General equations for deformation of peel strip
- 5.2.3.2 Basic goal
- 5.2.3.3 Analysis strategy and assumptions

- 5.2.3.3 Equations of the elastica
- 5.2.2.2 Case 1, elastic peeling:
- 5.2.2.3 Case 2, elastic-plastic peeling/unloading
- 5.2.2.4 Case 3, elastic plastic loading and unloading

5.3 THE SCRATCH/CUT TEST

- 5.3.1 the Cut Test
- 5.3.2 Simplified Analytical Model for Cut Test

5.4 THE PULL TEST

5.5 **SUMMARY**

6 ADHESION ASPECTS OF COATING AND THIN **FILM STRESSES**

6.1 INTRODUCTION

6.2 GENERAL MEASUREMENT METHODS FOR THIN FILMS AND COATINGS

- 6.2.1 Cantilevered beam method
- 6.2.2 Variations on Bending Beam Approach
- 6.2.3 Optical measurement of deflection
 - 6.2.3.1 Microscopy
 - 6.2.3.2 Laser beam deflection
 - 6.2.3.3 Laser interferometry
 - 6.2.3.4 Capacitive measurement of
 - 6.2.3.5 Stress Measurement by Vibrational Resonance
 - 6.2.3.6 Holography of suspended membrane
- 6.2.4 X-ray Measurements
- 6.2.5 Ultrasonics
 - 6.2.5.1 Through thickness stress measurement
 - 6.2.5.2 Surface stress measurement using skimming longitudinal waves
 - 6.2.5.3 Rayleigh wave method
 - 6.2.5.4 Surface skimming SH waves
- 6.2.6 Photoelasticity
- 6.2.7 Strain Relief Methods
- 6.2.8 Magnetics
 - 6.2.8.1 Barkhausen noise
 - 6.2.8.2 Magnetostriction approach
- 6.2.9 Raman spectroscopy
- 6.2.10 Miscellaneous Methods
 - 6.2.10.1 Stress Pattern Analysis by Thermal Emission (SPATE)

 - 6.2.10.2 Photoelastic coating technique
 - 6.2.10.3 Brittle lacquer method

7 CASE STUDIES FROM THE FIELD

7.1 A STUDY IN ADHESION SENSITIVITY TO CONTAMINATION

- 7.2 CASE OF THE IMPROPERLY CURED FILM
- 7.3 CASE OF THE STRESSED PIN
- 7.4 STABILITY MAPS

APPENDIX A: VECTORS AND VECTOR CALCULUS

APPENDIX B: NOTES ON ELEMENTARY STRENGTH OF MATERIALS (SOM) THEORY

APPENDIX C: MATERIAL PROPERTY DATA FOR SELECTED SUBSTANCES

APPENDIX D: DRIVING FORCE FORMULAE FOR A VARIETY OF LAMINATE STRUCTURES

APPENDIX E: SELECTED REFERENCES AND COMMENTARY ON ADHESION MEASUREMENT AND FILM STRESS LITERATURE

E1: GENERAL REFERENCES

E2: SELECTED REFERENCES ON ADHESION MEASUREMENT METHODS

E2.1 Blister test:

E2.2 Scratch Test:

E2.3 Indentation Debonding Test

E2.4 Scotch Tape Test

E2.5 Laser Spallation

E2.6 Selected References on Mechanics of Peel

Test

E2.7 Non Destructive Methods

E3: SELECTED REFERENCES ON STRESSES IN LAMINATE STRUCTURES AND COATINGS

E4: SELECTED REFERENCES ON FRACTURE MECHANICS AS RELATED TO PROBLEMS OF ADHESION OF FILMS AND COATINGS

E5: SELECTED REFERENCES ON STRESSES IN SOLIDS

APPENDIX F: GENERAL ADHESION MEASUREMENT REFERENCES

REVIEW ARTICLES GENERAL ADHESION PAPERS ACOUSTIC EMISSION/ULTRASONIC METHODS **BEND TEST BLISTER TEST** DOUBLE CANTILEVERED BEAM TEST CENTRIFUGAL LOADING TEST **ELECTROMAGNETIC TEST** FRACTURE MECHANICS STUDIES INDENTATION TEST INTERNAL FRICTION **IMPACT METHODS** LAP SHEAR TEST LASER/ELECTRON SPALLATION MISCELLANEOUS METHODS PEEL TEST **PULL TEST PULL OUT TEST PUSH OUT TEST** RESIDUAL STRESS SELF LOADING TEST SCRATCH TEST

TAPE TEST
THEORETICAL STUDIES
THERMAL METHODS
TOPPLE BEAM METHOD
WEDGE TEST